content loaded

ARTICLES

Impact of TXV and Compressor in the Stability of a High-End Computer Refrigeration System

Improving the transient behavior of the vapor compression cycle for the refrigeration system operating around an evaporator set-point temperature. The system behavior is studied in two cases, TXV being the only control element in the first case, while TXV and a compressor both act as control elements in the other case.

Click here to read full article


42-Volt Electric Air Conditioning System Commissioning and Control for a Class 8 Tractor

The electrification of accessories using a fuel cell as an auxiliary power unit reduces the load on the engine and provides opportunities to increase propulsion performance or reduce engine displacement

Click here to read full article


Electric Air Conditioning for Class 8 Tractors

Air conditioning and heating of heavy-duty truck cabs is an important contributor to engine efficiency, fuel economy and driver comfort. The air conditioner condenser coil and engine radiator typically share a common cooling fan, making it necessary to run the large engine cooling fan to provide condenser cooling. Engagement of the radiator cooling fan consumes a large amount of energy, further contributing to engine exhaust and noise emissions. Even under moderate temperature conditions, when the conventional engine driven air conditioning compressor is not in use, the belt drive system adds a small speed-dependent parasitic load to the engine. Electrically driven air conditioning systems have the potential for lower energy consumption than their mechanical counterparts: Electrically driven air conditioning systems can reduce engine idle time by decoupling the air conditioner system from the engine cooling fan while offering near zero parasitic load when not in use. This paper covers the design, integration, and testing of an electric air conditioning system for a Class 8 tractor for day cab cooling and is a continuation of the efforts initially published in SAE paper 2004-01-1478 [1]. A 42 VDC electric air conditioning system consisting of a variable speed compressor, remote condenser with a variable speed cooling fan, and a thermostatically controlled expansion valve was integrated into an existing Class 8 tractor. The OEM evaporator, in-vehicle ducting, and air speed control were unmodified. The electrical power for the electrified air conditioning system is supplied by a fuel cell auxiliary power unit. The Class 8 tractor has been in-service in the desert of Southern California. Included in the paper is a detailed description of the different control schemes examined and the control scheme implemented. Energy consumption and driver comfort for each scheme is evaluated. Future system improvements and possible system enhancements are also identified. All work has been performed at Southwest Research Institute and SunLine Transit Agency and is funded by the US Army RDECOM TARDEC National Automotive Center (NAC).

Click here to read full article.